Paracelcus Reloaded: Searching for the Perfect Dose of Exercise?

Professor Sanjay Sharma St George's University of London St George's Hospital NHS Trust sasharma@sgul.ac.uk

> Ewither?
@SSharmacardio

Conflicts/Disclosures: None

Cardiac
Risk in the Young

Objectives

- To provide a brief overview of the recognised benefits of physical activity on cardiovascular health.
- To discuss the currently recommended dose of physical activity for all individuals.
- To question whether too much exercise may have a deleterious impact on an otherwise normal heart.

Physical activity and CVD: Early Work

The first study to show an association between physical activity and risk of heart disease.

Morris et al. (1953) Lancet

Risk Hazard of CHD in Relation to Physical Activity

Death Rates as a Function of Cardiovascular Fitness

Church TS. Arch Int Med 2005

Leisure-Time Running Reduces All-Cause and Cardiovascular Mortality Risk

Duck-chul Lee, PHD,* Russell R. Pate, PhD, \dagger Carl J. Lavie, MD, $\ddagger \S$ Xuemei Sui, MD, PHD, \dagger Timothy S. Church, MD, PAD, § Steven N. Blair, PED \|

15 year observational study.

55,137 individuals.

Mean age 44 years old.

Runners had a 30\% all
cause reduction in mortality and a 45\% reduction in CVD events.

Dose of Jogging and Long-Term Mortality

The Copenhagen City Heart Study

Peter Schnohr, MD, DMSc,* James H. O’Keefe, MD, \dagger Jacob L. Marott, MSc,* Peter Lange, MD, DMSc,* \ddagger Gorm B. Jensen, MD, DMSc* ${ }^{*}$ §

1098 joggers and 3,950 healthy non joggers.
Jogging 1-2.4 hours, over 2-3 times per week and a slow to moderate pace ($6-10$ MET equivalents) was associated with the best results for reduction in all cause mortality.

Current Physical Activity Guidelines

- Adults:

30 mins of moderate intensity physical activity at least days per week
or 25 min vigorous activity 3 days per week

- Children: at least 60 minutes per day of moderate intensity physical activity.
(Chief Medical Officers Report 2004)

Endurance Athletes

(a) (Cardiac Risk in the Young

Centre for Sports Cardiology

Dose-Benefit Relationship

Exercise intensity

The Young Athlete's Heart

FR $\mathbf{4 3 H z}$
19 cm

Left Ventricular Cavity Dimensions in Highly Trained Athletes

告
Cardiac Risk in the Young Centre for Sports Cardiology

Remodeling of Left Ventricular Hypertrophy in Elite Athletes After Long-Term Deconditioning
Antonio Pelliccia, Barry J. Maron, Rosanna De Luca, Fernando M. Di Paolo, Antonio Spataro and Franco Culasso Circulation 2002;105;944-949; originally published online Feb 4, 2002; DOI: 10.1161/hc0802.104534

44 Italian Olympian males with LVH (> 13 mm) and enlarged LV cavity (> 60 mm).

De-trained for a mean of 53 months.

LV wall thickness and LV mass normalised.

Cardiac Risk in the Young Centre for Sports Cardiology

The Ugly Side of Exercise: Sudden Cardiac Death

90\% during or just after exercise

90\% in males

80\% don't have prodromal
symptoms

40\% in age < 18
years old

Triggers for Sudden Cardiac Death

Electrolyte imbalance

Adrenergic
surges

Acid/base disturbance

Can Exercise Induce Cardiomyopathy in a Normal Heart?

Endurance athletes

exercise 10-15 x the daily recommended exercise.

2 million marathon

 participants each year.Can you get too much of a good thing?

20 ${ }^{6}$) |Cardiac Risk in the Young Centre for Sports Cardiology

Evidence of Transient Cardiac Injury Post Marathon Running

- Raised cardiac troponin levels post race (EXERCISE INDUCED CARDIAC DAMAGE)
- Impaired left ventricular function (EXERCISE INDUCED CARDIAC FATIGUE)

Could Too Much Exercise Be Cardiotoxic?

Curdiac Arrbythmogenic Remodeling in a Rat Model of Long-Term Intensine Enercise

Begouna Benivo, Canna Gay-Jondi, Anma Serrano-Mollar, Echand Guasch, Yanfen Shii Jenn-Claude Tandif, Josep Bragada, Stanley Nattel and Lhws Mont

Cincuarion 2011;123:13-22; originally published online December 20, 2010 .
doi: 10.1161, CIPCTIATONAHA. 110.938282

Exercised for 60mins daily for 16 weeks

Compared with sedentary rats

Animal model of Endurance Training

Enlarged Atria and RVH/LVH Fibrosis

VT in 42) ${ }^{4}$ Cardiac Risk in the Young

Myocardial Late Gadolinium

Enhancement: Prevalence, Pattern, and Prognostic Relevance in Marathon
Runners ${ }^{1}$
Breuckmann. Radiology 2009
102 healthy males aged 50-72 years old.

Completed at least 5 marathons in the past 3 years.

12 had late gadolinuim enhancement which was 3 -fold commoner than in age-matched controls.

5 had LGE with a coronary artery disease pattern.

7 had non specific patchy fibrosis.

Atrial Fibrillation in Athletes

, . rillation in at
Atrial fibre-based conn
Long-lasting sport practice and lone atrial fibrillation
L. Mont ${ }^{1}$, A. Sambola ${ }^{1}$, J. Brugada ${ }^{1}$, M. Vacca ${ }^{1}$, J. Marrugat ${ }^{2}$, R. Elosua ${ }^{2}$,
C. Paré ${ }^{1}$, M. Azqueta ${ }^{1}$ and G. Sanz ${ }^{1}$
${ }^{1}$ Instltute of Cardonascular Diseases, Hospital Clintc, Institut dInvestigacions Biomediques Augwt Pl i Sunyer (IDIBAPS), Universty of Barcelona, Vilharroel 170, Barcelona 08036, Spain; '2Luplds and Cardiovascular Eptdemiology Research Unit, Institut Miontcipal d'Investigació Médica (IMIM), Barcelona, Spain literature-base and subs
chanisil" overtraining atory me be a contributory

Atrial fibrillation in endurance-trained athletes
A V Sorokin, C G S Araujo, S Zweibel, et al.
Br J Sports Med published online July 13, 2009
doi: $10.1136 / \mathrm{bjsm} .2009 .057885$

Atrial Fibrillation in Sportsmen

Incidence

Suties	Typeofstudy	$\begin{aligned} & \text { Men } \\ & \text { (\%) } \end{aligned}$	Age	Typeorsport(s)	Cased controls	Odds ratio(C) for A F inathletes
Karidinene tol ${ }^{5}$	Longituran cresecatrol	100	47 ± 5 unnes, 49 ± 5 cortros	Oierters	26233	$55(13-244)$
Morteda. ${ }^{6}$	Retrosective compred to general pooulition	100	$\begin{aligned} & 4 \pm \pm 13 \text { anticeses } 49 \pm 11 \\ & \text { norazalices } \end{aligned}$	Enduracespots 3 3hpervek	70 loneAF	6\%\% inmeatileses wit loneAF
Eosast etol ${ }^{\text {a }}$	Rerospective caseontrol	100	41 ± 13 Fprat 4 ± 111 cortols	Endurance spots: curent practice and >1500 accumulated hours of pactice	51109	287 (139-7.05) dovisted for ge a an hypetersion
Héduccieleta. ${ }^{\text {8 }}$	Casecontrol in patients undergong fluter ablation	83	53 ± 9 spors, 60 ± 10 cororos	Cyclig, funing, orswimming >3 hper week	311106	$1.81(1.10-288)$
Moline eto. ${ }^{\text {a }}$	Longiutuana creseatrol	100	$\begin{gathered} 39 \pm 9 \text { meneres } 50 \pm 13 \\ \text { sedentay } \end{gathered}$	Maxtion unes	225385	8.80 (1.26-61.29) dousted for ze and blood pessure
Bidestergeretol ${ }^{[1]}$	Longiturina cresecotrol	100	67 ± 7 colist 66 ± 6 goples	Cylits	13462	10\%AF F inglist, O\%AFi in cortos
Mortedal ${ }^{10}$. GRAFA Atuby	Prosective csiecontol	69	48 ± 11	Efidrace spots	107107	7311233-2299, 750 hof accunvulated heary phricial activt

5-10\% of middle aged endurance athletes

Risk of lone AF over 5-fold greater than in matched sedentary individuals.

Usually sportsmen who have been exercising since youth.

Almost all male.

Risk factors for Atrial Fibrillation in Athletes

AF in Athletes

Trigger
 ?Increased pulmonary vein ectopy

Modulators

Increased vagal tone:
Bradycardia
Shortening and dispersion
of the atrial refractory
period

Gastro-oesophageal reflux

Pressure and volume overload:
Atrial stretch
Myocyte Hypertrophy
Atrial dilatation
Inflammatory response
Atrial fibrosis

Sinus node disease and arrhythmias in the longterm follow-up of former professional cyclists

Sylvette Baldesberger ${ }^{1}$, Urs Bauersfeld ${ }^{2}$, Reto Candinas ${ }^{1}$, Burkhardt Seifert ${ }^{3}$, Michel Zuber ${ }^{4}$, Manfred Ritter ${ }^{5}$, Rolf Jenni ${ }^{6}$, Erwin Oechslin ${ }^{6}$, Pia Luthi ${ }^{1}$, Christop Scharf ${ }^{1}$, Bernhard Marti ${ }^{7}$, and Christine H. Attenhofer Jost ${ }^{1 *}$

Former professional cyclists

$$
(n=62)
$$

Mean age	$66 \pm 6 \mathrm{yrs}$	$66 \pm 7 \mathrm{yrs}$
QRS	$102 \pm 20 \mathrm{msec}$	$99 \pm 13 \mathrm{msec}$
HR	$66 \pm 9 \mathrm{bpm}$	$70 \pm 8 \mathrm{bpm}$
SND	10%	2%
Pacemaker	3%	0%
Pauses $>2.5 \mathrm{~s}$	6%	0%
Atrial flutter	6%	0%
NSVT	15%	3%

Sinus node disease and arrhythmias in the longterm follow-up of former professional cyclists

Sylvette Baldesberger ${ }^{1}$, Urs Bauersfeld ${ }^{2}$, Reto Candinas ${ }^{1}$, Burkhardt Seifert ${ }^{\mathbf{3}}$, Michel Zuber ${ }^{4}$, Manfred Ritter ${ }^{5}$, Rolf Jenni ${ }^{6}$, Erwin Oechslin ${ }^{6}$, Pia Luthi ${ }^{1}$, Christop Scharf ${ }^{1}$, Bernhard Marti ${ }^{7}$, and Christine H. Attenhofer Jost ${ }^{1 *}$
 $$
\begin{aligned}
& \text { Former professional cyclists } \\
& \qquad(n=62)
\end{aligned}
$$
 \section*{Former professional cyclists}
 \section*{Former professional cyclists}

Golfers

$$
(n=62)
$$

$66 \pm 6 \mathrm{yrs}$
QRS $\quad 102 \pm 20 \mathrm{msec}$
HR $66 \pm 9 \mathrm{bpm}$
SND
10\%
$66 \pm 7 \mathrm{yrs}$
$99 \pm 13 \mathrm{msec}$
$70 \pm 8 \mathrm{bpm}$
2\%
Pacemaker 3\%
0\%
Pauses > 2.5 s 6\%
0\%
Atrial flutter 6\%
0\%
NSVT 15\%
3\%

Risk of arrhythmias in 52755 long-distance cross-country skiers: a cohort study

Kasper Andersen ${ }^{1 *}$, Bahman Farahmand ${ }^{2,3}$, Anders Ahlbom ${ }^{2}$, Claes Held ${ }^{1}$, Sverker Ljunghall ${ }^{1}$, Karl Michaëlsson ${ }^{4}$, and Johan Sundström ${ }^{1}$

Studied participants in the Vasalopett (90k) cross country ski race between 1989-1998. 90\% Male.

Followed by until December 2005.

959 had significant arrhythmias (AF, A flutter and bradyarrhythmias) which correlated with the number of races completed and faster finishing times; HR 1.30 each.

High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias Role of an electrophysiologic study in risk stratification

```
Hein Heidbuichela*, Jan Hoogsteen b,d, Robert Fagarda}\mp@subsup{}{}{\mathrm{ a/ L. Vanhees a}
```

Hugo Ector ${ }^{\text {a }}$, Rik Willems ${ }^{\text {a }}$, Johan Van Lierde ${ }^{\text {c,d }}$

46 endurance athletes

Symptoms $\mathrm{n}=36$

Syncope 65\%
Aborted SCD 2\%
Palpitation 15\%

Complex ventricular arrhythmias
Very abnormal ECG in 58\%
VT or RV origin in 49\%
Criteria for ARVC in 59\%

9 died suddenly and 9 got ICD

Reduced right ventricular ejection fraction in endurance athletes presenting with ventricular arrhythmias: a quantitative angiographic assessment

Joris Ector, Javier Ganame, Nico van der Merwe, Bert Adriaenssens, Laurent Pison, Rik Willems, Marc Gewillig, and Hein Heidbüchel*

22 symptomatic athletes; cyclists (77\%)
Arrhythmias of right ventricular origin
Right ventriculography revealed enlarged right ventricles with reduce ejection fraction

Possible explanations:

1. Increased RV work load may unmask heterozygotes for ARVC
2. Exercise causes adverse remodelling of the RV and increases risk of arrhythmias

Cardiac Risk in the Young Centre for Sports Cardiology

Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrhythmias of right ventricular origin
A La Gerche, C Robberecht, C Kuiperi, et al.
Heart 2010 96: 1268-1274 originally published online June 4, 2010 doi: 10.1136/hrt.2009.189621

$\mathbf{n}=\mathbf{4 7}$
51% 'Definite ARVC' by TFC
36% 'Suspected ARVC' by TFC

An ARVC-like phenotype may be acquired through intense exercise

Cardiac Risk in the Young Centre for Sports Cardiology

Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes

André La Gerche ${ }^{1,2 *}$, Andrew T. Burns ${ }^{3}$, Don J. Mooney ${ }^{3}$, Warrick J. Inder ${ }^{1}$, Andrew J. Taylor ${ }^{4}$, Jan Bogaert ${ }^{5}$, Andrew I. Maclsaac ${ }^{3}$, Hein Heidbüchel ${ }^{2}$, and David L. Prior ${ }^{1,3}$

40 healthy endurance athletes

Assessed immediately before, after and 7 days after an ultraendurance race.

Troponin levels correlated with magnitude of RV dysfunction

 Centre for Sports Cardiology
Right Ventricular Exercise Physiology
REST
Left Ventricle
Right
Cardiac output (I/min)
55
Vascular resistance (dyne/sec/cm3) 1100 70
Load pressure (mm Hg) 130/75 (85) 25/9(15)
EXERCISE
Cardiac output (1/min) 25 25
Vascular resistance (dyne/sec/cm3) $\downarrow \downarrow \downarrow$
Load pressure (mm Hg)

Exercise-induced arrhythmogenic right ventricular cardiomyopathy: fact or fallacy?

Sanjay Sharma* and Abbas Zaidi

Running: the risk of coronary events ${ }^{\dagger}$

Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners

108 Males aged 50-72 years old

High calcium scores and late gadolinium enhancement in presumably healthy middle aged marathon runners compared with Framingham risk matched controls

Marathon running associated with a 2 -fold increase in LGE.
56% runners were current or former smokers

Adverse atrial

remodelling
Atrial fibrillation
High degree AV block

Chronic endurance exercise

Myocyte necrosis
(cTn rise)

? Myocardial scars

Dilated Cardiomyopathy
2($\left.{ }^{5}\right)$ | Cardiac Risk in the Young

```
Long-Term Clinical Consequences of
Intense, Uninterrupted Endurance Training
in Olympic Athletes
```


114 athletes (78\% Male)

Mean age 22 ± 4
Continuous intensive physical training for at least 2
consecutive Olympics (2-5)
Mean training period 8.6 ± 3 years (4-17)

Rowers and canoeists ($n=55$), cyclists ($n=19$), cross-country skiing ($n=15$) long distance running/marathon ($n=9$), swimming ($n=6$) triathlon ($n=2$)

Fgure 1
Serlal Echocardlographlc Vlews of the LV In an Ellte Itallan Marathon Runner

Impact of Lifelong Exercise "Dose" on Left Ventricular Compliance and Distensibility

Paul S. Bhella, MD, *† Jeffrey L. Hastings, MD,* Naoki Fujimoto, MD,* Shigeki Shibata, MD, PHD,*

Graeme Carrick-Ranson, PHD,* M. Dean Palmer, MS,* Kara N. Boyd, MS,** Beverley Adams-Huet, MS, \ddagger
Benjamin D. Levine, MD ${ }^{*} \ddagger$
Aging is associated with decreased left ventricular compliance and distensibility.

4-5 sessions of intensive exercise for 30 minutes per week over 25 years prevented such age related changes.

Lower doses of exercise did not retard this normal aging process.
Masters athletes exhibited the most compliant ventricles.
and may reduce the risk of hypertension and heart failure with preserved ejection fraction

Dose of Jogging and Long-Term Mortality

The Copenhagen City Heart Study

Peter Schnohr, MD, DMSc,* James H. O’Keefe, MD, \dagger Jacob L. Marott, MSc,* Peter Lange, MD, DMSc,* \ddagger
Gorm B. Jensen, MD, DMSc* ${ }^{*}$ §

Elite Endurance Athletes Live Longer than Non Athletes

Strenuous endurance exercise improves life expectancy: it's in our genes

Jonatan R Ruiz, ${ }^{1}$ Maria Morán, ${ }^{2,3}$ Joaquín Arenas, ${ }^{2-4}$ Alejandro Lucia ${ }^{5}$

FASTIRACK CLINICAL RESEARCH doi:10.1093/eurhearti/eht347
\qquad
Mortality of French participants in the Tour de France (1947-2012)

Eloi Marijon ${ }^{1,2,3,4 *}$, Muriel Tafflet ${ }^{1,2,5}$, Juliana Antero-Jacquemin ${ }^{1,5}$, Nour El Helou ${ }^{1,5,6}$ Geoffroy Berthelot ${ }^{1,5}$, David S. Celermajer ${ }^{7}$, Wulfran Bougouin ${ }^{1,24}$, Nicolas Combes ${ }^{8}$, Olivier Hermine ${ }^{1,9,12,13}$, Jean-Philippe Empana ${ }^{1,2}$, Grégoire Rey ${ }^{10}$, Jean-François Toussaint ${ }^{1,5,11 \dagger}$, and Xavier Jouven ${ }^{1,2,3,4 \dagger}$

Journal of Science and Medicine in Sport 13 (2010) 410-416

Review

Mortality and longevity of elite athlete

Bidurnce	Formar athtan [camal*	Kondilina (comoraly)	Minin caskinim		
Fritaynd Ulowiynt	Olarnen $\|n=7 E 7\|$ who paticipand in betwen 185 and 1 yis in the Oxford-Cantridys beat inc:	Surderd matrity tublea formun	Hifere longevit in masa	Total nembe of datu in cortoph was atas $1523-1858,186-18521854-1823$ and 1225-1828 puriad nupections	
Asou ${ }^{\text {P }}$	apint und undrace nurex cridrien nedraphy plyan!	Italikchali ' (madericah diting unhad and nedam pontrox both fomClanbridy \|atoln n=31)	Smiarlangevity in casarand tratol	yount ariy inthothan lind wigtiy (-15 ywan! lomger	
Dutr	4505 athen mant gubatimberimen 1000 ard ins in 10 hany 1 ls unimision haubil arox loobit trock $2+$ - petal		LSt meri lible of retaity	BEx rabetion in deth mit corpernd mith uqpected ditelorgormethed Aneicun male [buad on data foni riand man\|	
Morimestas	Milipe Sata Uhiwnì y thiter [lese wimern in waity dipporal bon 	Nos-athefe Uhiwnily ratur $\mid \boldsymbol{n}-585$)	Smiarlangevity in casarand cratol	und E9T yaur in combla	
Frat	Havend and Kil Univerity oanven [n -172\| maticihting dinn $1022-1902$	Fardon thumate \|v-172)	Cazatind longer	Cenallinders ywn manrye whenan centrole finded 51.5 pars	
以込		Thip arivanity gradura and warga hpaner popation	Caxalind longer five te twe extril grapt	Nenben nel prided -3 m of cere uin at 	
Schnokr ${ }^{1}$	apart [n-259, ben betmen 1580 and 1515)	Denurl Duixh male populition	Lsmarriak sid duath befas 50 pron of age in cans	-373 lower rial of duah betwoun 25 ind an ywir of ago in utheta, bot thevatur ainier dethintef tin lor the grend papuation	
Foldrak"	Henerdather leterner n-591\|nto therid Favaid eslage batwon 13so Ind 1912 luablif fotbel own trak or cantirabion al $2+$ पpartu\|	-	Modferrese in leogrity betweun upork, bet stheuncei natad to the utiet sl pricipation in 	xiphy erfor ard aigionty man stum athlun \|1-2 hetion, 40. Is ind 33.15 reupediond	
Bughakek mad Showat"	 1304)	raka	Smiarlie apectarcy in cang ved comenh, bit the nonMori playun lived longar	Nan Moriplaymind incemed [-11 porn] longwity	
Witribar eta ${ }^{\text {a }}$	ntirid plining bexven 1311 und 1315)	15 whin mis popeltion	Cana ind dighty buye the cartol	Alcaus SM9 mar roded by ESin una	
Grenenata ${ }^{48}$	3se Fimith charpon undurnos sbinn ben beimen 1345 and 1519	Frixh mile popltion	Cazalind longer then cartule	Casuh hareden if of tis yan [28-43 nen pan fler finihimde)	
minsanet ath	Nen pothrienal Dath makiax tution $[n-723 x)$ die to finh ult endranor [231 lm$)_{\text {max }}$	Min Duth peparinion	Canalind longrthen cartol	 	
Samaet $0^{n \prime \prime}$	Firnith dite athera uctive during tyap$15 E 5 / n=2512$ including enderice sparts, tern ymen trat und hued jurpen and aprithen und power nthenal	Agradanasimidunar ruichei man \|v-1717		Cana, enpecily urdunce uthetus fived lorger than sartule	 und mas parn in centole
Hephatap	Sidcohar ulatidnta $\|v=2003\|$ minin the deen raher"	Finish goneril popution	The 'prondin' efhet of ultrourixupricpitonix uportodenoment Fiventin aporad nquing high h__	Al cans SM med CNOSME wn mach [-108 and -5x]	
	Nothon Cailionin numen apod 250 your \|n-SDE, men ard werian		Deropphichly mathed is- 10 yman\|	Contalslyod bnye/indhad loundabiny in ine fity	humen dereutrated a newinal boneft ver 0.01


```
Vh,_ maind mongn uptan
```

Masaru Teramoto ${ }^{\text {a,* }}$, Timothy J. Bungum ${ }^{\text {b }}$
BJSM 2011

Numerator versus Denominator

Prospective Studies

CARDIOTOXIC

?

Conclusions

Moderate exercise has cardiovascular benefits.

Long term endurance exercise promotes atrial fibrillation in some athletes.

Larger prospective studies are necessary to confirm or refute whether life long endurance exercise exerts a plethora of deleterious effects on an otherwise normal heart.

